Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Life Sci Res ; 33(1): 121-141, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35651640

RESUMO

Suspended particulate matter, phytoplankton and bacteria can be exploited to form larger aggregates, so-called bio-flocs. These serve as feeds for cultured shrimps, govern inorganic nutrients and load bacteria including pathogens. The current study aimed to simulate aggregate formation from available particulate matter in shrimp pond water and investigate quality of aggregates as well as possible impact to the pond water. Molasses was added to cylindrical tanks containing shrimp pond waters, and the tanks were rolled for 48 h. Besides water quality (inorganic nutrients and physical parameters), the researchers investigated and separated bacterial community compositions (BCC) to free-living (FL) and bio-flocs/particle-attached (PA) bacteria via 16S rRNA amplicon sequencing, and measured macro-molecules contents (carbohydrates, lipids and proteins) in the bio-flocs. Molasses addition increased bacterial numbers in the bio-flocs to two-fold higher than the FL's. Moreover, potential probiotics such as Halomonas, Psychrobacter, Mesonia and Chromohalobacter were detected associated to bio-flocs and dominated the BCC. In contrast, bio-flocs without molasses showed 4-fold less carbohydrates and harboured elevated potential pathogens such as Vibrio and Alteromonas. Results show that molasses (at C/N ratio 1:2) increases pH (to 8.2 ± 0.09 and 8.0 ± 0.04 after 24 h and 48 h, respectively) in pond water, improving beneficial biofloc formation. Molasses also increased carbohydrates and proteins in bio-flocs and maintained abundances of beneficial bacteria resulting in low inorganic nutrient concentrations. Thus, molasses is suitable for shrimp farming to improve rearing processes.

2.
Sci Total Environ ; 771: 145202, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736134

RESUMO

Despite climate-change challenges, for most aquaculture species, physiological responses to different salinities during ambient extreme cold events remain unknown. Here, European seabass acclimatized at 3, 6, 12, and 30 PSU were subjected to 20 days of an ambient extreme winter cold event (8 °C), and monitored for growth and physiological performance. Growth performance decreased significantly (p < 0.05) in fish exposed at 3 and 30 PSU compared to 6 and 12 PSU. During cold stress exposure, serum Na+, Cl-, and K+ concentrations were significantly (p < 0.05) increased in fish exposed at 30 PSU. Serum cortisol, glucose, and blood urea nitrogen (BUN) were increased significantly (p < 0.05) in fish exposed at 3 and 30 PSU. In contrast, opposite trends were observed for serum protein, lactate, and triglycerides content during cold exposure. Transaminase activities [glutamic-pyruvate transaminase (GPT), glutamic oxaloacetic transaminase (GOT), lactic acid dehydrogenase (LDH), gamma-glutamyl-transaminase (γGGT)] were significantly higher in fish exposed at 3 and 30 PSU on days 10 and 20. The abundance of heat shock protein 70 (HSP70), tumor necrosis factor-α (TNF-α), cystic fibrosis transmembrane conductance (CFTR) were significantly (p < 0.05) increased in fish exposed at 3 and 30 PSU during cold shock exposure. In contrast, insulin-like growth factor 1 (Igf1) expression was significantly lower in fish exposed at 3 and 30 PSU. Whereas, on day 20, Na+/K+ ATPase α1 and Na+/K+/Cl- cotransporter-1 (NKCC1) were significantly upregulated in fish exposed at 30 PSU, followed by 12, 6, and 3 PSU. Results demonstrated that ambient extreme winter cold events induce metabolic and physiological stress responses and provide a conceivable mechanism by which growth and physiological fitness are limited at cold thermal events. However, during ambient extreme cold (8 °C) exposure, European seabass exhibited better physiological fitness at 12 and 6 PSU water, providing possible insight into future aquaculture management options.


Assuntos
Bass , Frio Extremo , Aclimatação , Animais , Osmorregulação , Salinidade
3.
Transl Anim Sci ; 5(4): txab223, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34988379

RESUMO

There is a tendency to farm fish in low turbidity water when production takes place in the land-based recirculating aquaculture systems (RAS). However, the effect of water turbidity on stress and performance is unknown for many species cultured in RAS. The effect of different turbidity treatments as Formazine Attenuation Units (0 FAU, 15 FAU, and 38 FAU) on feed intake performance (latency, total feeding time, and total feed intake) and physiological blood stress parameters (cortisol, lactate, and glucose) in medium-sized pikeperch ((Sander lucioperca) n = 27, undetermined sex and age) of initial body weights of 508.13 g ± 83 g (at FAU 0, 15, and 38, respectively) was investigated. The rearing system consisted of 9 rectangular tanks (200 L per tank). Fish were housed individually (n = 1, per tank, n replicates per treatment = 9). All tanks were connected to a recirculation system equipped with a moving bed biofilter. Feed intake in pikeperch kept at low turbidity (0 FAU) was 25% lower than pikeperch kept at high turbidity (38 FAU) (P < 0.01) and also significantly (10.5%) lower compared to feed intake in pikeperch kept at intermediate turbidity (15 FAU) (P < 0.01 for 0 FAU vs. 15 FAU, feed intake sign. Value as the main effect is P < 0.01). Pikeperch kept at low turbidity showed significantly slower feeding response (latency time) towards pellets entering the tank, shorter feeding times (both P < 0.05), and higher glucose blood concentration (73%) in contrast to pikeperch kept at highest turbidity. A reduction of 25% feed intake has obvious economic consequences for any fish farm and present data strongly emphasize the importance of considering the species-specific biology in future RAS farming.

4.
Sci Total Environ ; 749: 141458, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32829272

RESUMO

Unprecedented shifts in temperature and precipitation patterns in recent decades place multiple abiotic stressors on the fish. In teleosts, metabolic, osmoregulatory, and molecular potential as tolerance responses to extreme ambient heatwave events at different salinities are poorly understood. The study was performed to evaluate the physio-biochemical stress responses and acclimation potential of European seabass, Dicentrarchus labrax maintained at four different salinities followed by an extreme ambient heatwave exposure. Fish were kept at 32, 12, 6, and 2 psu for 35 days followed by a simulated extreme ambient heatwave (33 °C) exposure for 10 days. Fish growth performances, physio-biochemical and molecular responses were recorded. Fish acclimated at 32 and 2 psu exhibited significantly (p < 0.05) decreased growth performance. Serum [Na+] and [Cl-] ions were significantly lowered (p < 0.05) in 32 psu fish on day 10 of heatwave exposure. While serum glucose, triglycerides, and protein tended to decrease during the extreme ambient heatwave exposure, lactate content increased significantly (p < 0.05) in 32 psu fish on day 10. In 32 and 2 psu fish, serum metabolic enzymes, and cortisol levels increased significantly (p < 0.05) during the extreme heatwave exposure. On days 5 and 10, HSP70 mRNA was significantly (p < 0.05) upregulated in kidneys and gills of 32 and 2 psu fish, while Igf1 showed downregulation. In gills of 2 psu fish, ATPase Na+/K+-α1 and NKCC1 expression decreased significantly (p < 0.05) in 2 psu, in contrast, significant upregulation was observed at 32 psu fish during extreme ambient heatwave exposure. On days 5 and 10, cystic fibrosis transmembrane conductance (CFTR) upregulation was significantly lower (p < 0.05) in 32 and 2 psu fish. Results suggest that European seabass held at 12 and 6 psu water fare better physiological fitness during the tested extreme ambient heatwave event (33 °C), providing possible insights into options for future aquaculture management in a warming environment.


Assuntos
Bass , Aclimatação , Animais , Bass/metabolismo , Brânquias/metabolismo , Osmorregulação , Salinidade , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Sci Total Environ ; 735: 139371, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32473428

RESUMO

Extreme weather events are becoming more intense and frequent as a result of climate change. The modulation of hemato-physiological potential as a compensatory response to extreme warm events combined with different salinities is poorly understood. This study aimed to assess the hemato-physiological and molecular response of European seabass, Dicentrarchus labrax exposed to extreme warm temperature (33 °C) after prior acclimatization at 32 psu, 12 psu, 6 psu, and 2 psu water. Fish were acclimated to 32 psu, 12 psu, 6 psu, and 2 psu followed by 10 days extreme warm (33 °C) exposure. Along with growth performance and survival, hemato-physiological response and molecular response of fish were recorded. Fish held at 32 psu and 2 psu exhibited significantly lower growth performance and survival than those at 12 psu and 6 psu (p < 0.05). Red blood cells (RBC), hematocrit, and hemoglobin content were significantly decreased, while white blood cells (WBC), erythrocytic cellular abnormalities (ECA) and erythrocytic nuclear abnormalities (ENA) were found to increase significantly in 32 psu and 2 psu fish (p < 0.05). Plasma lactate was found to increase significantly in 32 psu fish on day 10 (p < 0.05). Activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and TNF-α expression increased significantly in 32 psu and 2 psu fish (p < 0.05). Most of the repeated measured parameters indicated limited acclimation capacity during the extreme warm exposure at all four salinity groups. However, overall results indicate that European seabass acclimatized at 12 psu and 6 psu salinities, can cope better during extreme warm exposure (33 °C).


Assuntos
Bass , Aclimatação , Animais , Catalase , Salinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...